Implicit finite incompressible elastodynamics with linear finite elements: A stabilized method in rate form
نویسندگان
چکیده
منابع مشابه
A Fictitious Domain Method with Mixed Finite Elements for Elastodynamics
We consider in this paper the wave scattering problem by an object with Neumann boundary conditions in an anisotropic elastic body. To obtain an efficient numerical method (permitting the use of regular grids) we follow a fictitious domain approach coupled with a first order velocity stress formulation for elastodynamics. We first observe that the method does not always converge when the Qdiv 1...
متن کاملAdaptive Incompressible Flow Computations with Linearly Implicit Time Discretization and Stabilized Finite Elements
Fully adaptive solutions of imcompressible ow problems employing the discretization sequence rst in time then in space are presented. The time discretization is done by linearly implicit one{step methods possibly of high order with automatic step size control. A posteri-ori error estimates for the stabilized nite element discretization in space are obtained by solving local Dirichlet problems w...
متن کاملA Stabilized Mixed Finite Element Method for Nearly Incompressible Elasticity
We present a new multiscale/stabilized finite element method for compressible and incompressible elasticity. The multiscale method arises from a decomposition of the displacement field into coarse (resolved) and fine (unresolved) scales. The resulting stabilizedmixed form consistently represents the fine computational scales in the solution and thus possesses higher coarse mesh accuracy. The en...
متن کاملA stabilized finite element method for the incompressible magnetohydrodynamic equations
We propose and analyze a stabilized nite element method for the incompressible magnetohydrodynamic equations. The numerical results that we present show a good behavior of our approximation in experiments which are relevant from an industrial viewpoint. We explain in particular in the proof of our convergence theorem why it may be interesting to stabilize the magnetic equation as soon as the hy...
متن کاملA stabilized nonconforming finite element method for incompressible flow
In this paper we extend the recently introduced edge stabilization method to the case of nonconforming finite element approximations of the linearized Navier-Stokes equation. To get stability also in the convective dominated regime we add a term giving L2-control of the jump in the gradient over element boundaries. An a priori error estimate that is uniform in the Reynolds number is proved and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering
سال: 2016
ISSN: 0045-7825
DOI: 10.1016/j.cma.2016.07.015